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Abstract

Transient coupled radiative and conductive heat transfer in a two-layer, absorbing, emitting, and isotropically
scattering non-gray slab is investigated by the ray tracing method in combination with Hottel’s zonal method. One
outer boundary is opaque, and another is semitransparent. The radiative energy transfer process in a semitransparent
composite is divided into two sub-processes, one of which considers scattering, the other does not. The radiative
transfer coefficients of the composite are deduced under specular and diffuse reflection and combined specular and
diffuse reflection, respectively. The radiative heat source term is calculated by the radiative transfer coefficients.
Temperature and heat flux are obtained by using the full implicit control-volume method in combination with the
spectral band model. The method presented here needs only to disperse the space position, instead of the solid angle. A
comparison with previous results shows that the results are more accurate. © 2001 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Semitransparent medium (STM) is widely applied to engineering, such as glass [1,2], ceramics [3], fibre [4], solid fuels
[5] and so on. For a STM, energy can be directly transferred between the inside of the medium and its surroundings or
opaque surface. The nature of the radiative transfer can provide a positive or negative internal heat source, and affect
the temperature field and heat flux. For the STM at elevated temperatures, in high-temperature surroundings or
subjected to large incident radiation, radiative heat transfer may be especially important. To obtain accurate tem-
perature and heat flux in a STM, the radiative effect should be considered carefully as well as heat conduction.

Early studies of this subject were reviewed in detail by Viskanta and Anderson [6]. Recently, some researchers have
focused on the coupled heat transfer in a two-layer or multi-layer planar STM. For example, based on the Galerkin
method combined with a finite-difference method, Ho and Ozisik [7,8] analyzed the transient coupled radiative and
conductive heat transfer in a two-layer absorbing, isotropically scattering gray composite subjected to external radi-
ation at one of its boundaries. The outer boundaries were diffuse and opaque. Spuckler and Siegel [9], and Siegel [10-12]
investigated steady-state and transient temperature distribution in two-layer and multi-layer planar STM with diffuse
reflective surface by using two-flux method in combination with Green’s functions, and carefully studied the effects of
isotropic scattering and refractivity of STM.

Transient temperatures were obtained for a single-layer, absorbing, and emitting STM [1] and for a single-layer
isotropically scattering STM [13] by using the ray tracing method in combination with Hottel’s zonal method [14] and
the control-volume method, and the effects of the refractive index and the various radiative properties of surface and the
thermal boundary conditions are included. In [15,16], this method was used to evaluate the internal radiative heat
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Greek symbols
Vgl » V1 g
Vbp

fractional spectral emissive power of spectral band k at nodal temperature T7;,
Aur = [ Ini(T) 2] 25 1, (T3 i

unit heat capacity of the bth layer, J m—> K~!

dimensionless unit heat capacity, Cy; = C,/C

exponential integral function, E3(x) = fol exp(—x/p)u du

function defined in Eq. (20)

convection-radiation parameter, H, = h;/(¢T?) and H, = hy/(cT?)

convective heat transfer coefficient at surfaces S, and S, respectively, W m~2 K~!
harmonic mean thermal conductivity at the interface ‘e’ and ‘iw’, W m~' K™
thickness of each layer in the composite, m

total thickness of composite, L = L; + L, m

number of control volumes in the hth layer

total number of control volumes in the composite, M, = M| + M,
conduction-radiation parameter of the bth layer, Ny = k;,/(46T>L,)

total number of spectral bands

refractive index of the bth layer and the ith control volume, respectively, n; = n; when
i <M, + 1, otherwise, n; = n,

smaller and larger refractive index, respectively

quotient of specular reflection coefficients, Eq. (19)

dimensionless heat flux, § = ¢/oT?*

dimensionless external radiative fluxes incident at x = 0 and L;, g5 _ = oT{ /(aT}),
4, = ol _J(oT?)

radiative, conductive and convective heat fluxes, respectively, W m~
total heat flux, ¢' = ¢* + ¢*

radiative heat fluxes at surface S| and S,

boundary surfaces (Fig. 1)

internal interface of two layers (Fig. 1)

black surfaces denoting the black environment (Fig. 1)

radiation transfer coefficients of surface vs. surface, surface vs. volume and volume vs.
volume in non-scattering media relative to the spectral band k(A4)

radiation transfer coefficients of surface vs. surface, surface vs. volume and volume vs.
volume in isotropically scattering media relative to the spectral band k(AZ;)
absolute temperature of control volume i, K

fraction of radiative intensity transmitted through an interface (Fig. 3)

gas temperatures for convection at X = 0 and X = 1, respectively, K (Fig. 1)
dimensionless gas temperatures fgl =Tu/T,, ng =Tp/T;

reference temperature or uniform initial temperature, K

temperatures of the boundary surfaces S; and S, respectively, K

dimensionless temperatures Ts, = Ts, /Ty, Ts, = Ts, /T

temperatures of the black environment, K (Fig. 1)

physical time, s

dimensionless time, ¢ = (46T /C\L,)t

steady-state dimensionless time

time interval, s

coordinate in direction perpendicular to layer interface, m; X = x/L,

spatial interval, m (Fig. 1)

distance of ray transfer between both subscripts, m (Fig. 1)

distance of ray transfer, m

2

transmissivity at surface S
transmissivity at internal interface (Fig. 1)
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0 dimensionless thickness of the 1st layer 6 = L;/L,

g2, E2¢ emissivities at boundary surfaces (Fig. 1)

n; 1 — w;, when i <M, + 1, w; = w,, otherwise w; = w,

0,9 angle of reflection, incidence or refraction, respectively

Kbk extinction coefficients of layer b, m~!

A wavelength, m

u direction cosine, u = cos(f)

Hig» tag, Hai critical direction cosine

Pab» Pog> Pop reflectivities at interfaces

Py Pros reflectivities, subscript ‘s — 4’ denotes radiation from a smaller to a larger refractive
index and subscript ‘4 — s’ from a larger to a smaller refractive index

o Stefan—Boltzmann constant, W m~2 K~*

Ok spectral scattering coefficient, m™'

Tpk spectral optical thickness of layer b

P; radiative heat source of control volume i

Wp spectral single-scattering albedo of layer b

Subscripts

a absorbed quotient in the overall attenuated radiative energy

b layer index: » =1 in 1st layer; » = 2 in 2nd layer

bP from layer b to the interface of two layers

c, h index, ¢,h = —o00,2

gb,bg ‘gh’ denotes from gas to layer b and ‘bg’ denotes form layer b to gas

ie, iw right and left interface of control volume i (Fig. 1)

k relative to spectral band k&

Superscripts

d, s diffuse and specular reflection, respectively

s+d combined specular and diffuse reflection

m,m+ 1 time step

source and to solve the transient energy equation for a two-layer isotropically scattering STM with the semitransparent
or the opaque outer boundaries, and the results for many conditions are obtained. The objective of present paper is to
extend the method to study the transient coupled radiation and conduction in a two-layer isotropically scattering STM
with one opaque outer boundary and one semitransparent outer boundary and the semitransparent internal interface.
Each layer has different radiative properties and different refractive index, and the effects of single-scattering albedo,
reflective characteristics, conduction-radiation parameter, and emissivity on the temperature distribution and heat flux
are included.

2. Analysis
2.1. Physical model and governing equations

The analysis is for an absorbing, emitting, and isotropically scattering composite composed of a two-layer composite
planar STM. As shown in Fig. 1, the composite layer is between two black surfaces (S_,, and S, ), whose temperatures
are Ts _ and Ts, , respectively. Boundary surface S, is opaque, and boundary surface S; and internal interface Sp are
semitransparent. The 1st layer is divided into M, control volumes along its thickness, and the 2nd layer is divided into
M, control volumes, and the total number of nodal is M, = M| + M, + 2. 1, and 2; are used to represent the ith node in
the 1Ist layer and the 2nd layer, respectively. 1; and 2; are shortened to i in the following equations except for radiative
transfer coefficient (RTC), i.e., when i <M + 1, i represents the ith node in the Ist layer and the subscript in the
equation is b = 1; otherwise i represents the (i — M; — 1)th node in the 2nd layer and » = 2. Considering transient
coupled radiation and conduction, between the time intervals ¢ (= mA¢) and ¢ + At (= [m + 1]A¢), the fully implicit
discrete energy equation of control volume i is obtained as
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Fig. 1. The zonal discretization model of a two-layer planar composite medium.
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2.2. Radiative heat source

The key to solving the transient discrete energy equation is to solve the local radiative heat source term (9}). As far
as one-dimensional problem is concerned, the radiative heat source of control volume i is equal to the difference of
radiative flux densities between its two interfaces [13]:

P = qio(T) = 4i(T) = ¢;,(T) = qj1)o(T), 2<i<M + 1 (2)

For semitransparent surface S;, opaque surface S,, ¢}, can be written as

g, =0 Z {nZk $2Sscliiry, Ts, — [S—oeSaliir, T8+ ["ik (S2V;] Ak, TS, — 2, [ViSa] (Awr, T_f‘]
=

M+1 i Mi+1
3 S [l T = D e T+ Y [ VS e T[SV e, TS }
j=it1 1= ey
2<i< M, (3)

When i =1 and i = M, + 1, the radiative heat flux densities of boundary surfaces g5 and gg, are given as follows:
45, = G
Mi+1
GZ {n“ S8 Ay, To, = [S-ocSalidir T8+ > [ (VS_oo) Ak, T =[S V] Ak TS{X] } (4a)
j=2
s, = 40t s1)e

Mi+1
G'Z {nZk Sz Ak TS T4 [S_ Sz] Ak Ts_ o T + Z |:}’l2A ] Ak qu ;2 — njzk [V;Sz} kA" T, T4:| } (4b)

)
Jj=2

2.3. Boundary and initial conditions

For semitransparent surface S, radiative energy can be directly transferred from the surroundings to the interior of
the composite, so that the conduction and convection conditions at S is

hl(Tsl — gl) = 2kzn(T2 TSI)/AX, x=0. (53)

For opaque surface S,, there is radiative and conductive heat transfer between S, and the interior of the composite, and
between S, and the surroundings, so the boundary condition is
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NB
g5, + 2kt (T, = Tur) [ Ax = 0 ey |:Ak«,T.\‘_x Ty = Aizg T3, | +mo(Tp = Tsy), x =L, (5b)
k=1

where g5, is given by Eq. (4b). The reflection and refraction at interface Sp are considered in RTC.

If convective heat transfer coefficients #; and 4, in Eqgs. (5a) and (5b) approach infinity, the surface temperature is
equal to that of the surroundings, i.e., Ts, = T, and Ts, = T, then Egs. (5a) and (5b) become first kind boundary
conditions. If 4, is finite but 4, is infinite, Eqs. (5a) and (5b) become mixed boundary conditions, i.e., a first kind
boundary condition at surface S, and a third kind at surface S;.

Although the initial condition for the results given here is a uniform temperature distribution, the method is valid for
an arbitrary initial temperature distribution.

3. Radiative transfer coefficient (RTC)

RTC of a surface or a control-volume element i vs. element j is defined as the quotient of the radiative energy
absorbed by element j in the transfer process of the radiative energy emitted by element i. For a scattering STM, the
transfer process includes:

1. the radiative energy reaching element j directly,
2. the reflection by surfaces once or many times,
3. the scattering by the medium once or many times.

The transfer process of radiative energy in a scattering STM can be divided into two sub-processes according to the
transfer mechanism. That is,

1. Only the absorption, emission and reflection of the STM are considered, but not its scattering.

2. Only scattering is considered according to the scattering mechanism — for isotropic scattering, the radiative intensity
scattered by element j is distributed uniformly. Such distribution is equivalent to the spacial distribution of the
radiative intensity emitted by element ;.

3.1. RTC without considering scattering

3.1.1. RTC for specular reflection

By using the energy transfer relations of Hottel’s zonal method [14] between surfaces and control volumes, between
control volumes and control volumes, and the geometric relations in Fig. 1, under specular reflection, the process of
deducing RTC (S_..5,); is taken, here, as an example.

To form a more concise notation, four functions are defined [15]:

FTb‘k(Z) = eXp(*be‘kZ/,Llh)7 (63)
Flpe = PbPPbgmk(ZLb)u (6b)
Fy = [VleZPp]gPng,k(ZLl)FT2‘k(2L2)]/[(1 — Fx) (1 = Ehy)l, (6¢)
FAypi = 1 — FT, . (Ax). (6d)

Under specular reflection, the incident angle of a ray is equal to the reflective angle. Therefore, the expression for radiative
intensity attenuation along the path of a ray emitted at an arbitrary angle can be determined by tracing this ray. Then the
RTC considering multiple reflection for an absorbing, emitting STM can be calculated by integrating in hemispheric space.
As shown in Fig. 2, the unit radiative intensity transmitted through the upper surface into the STM is absorbed by the
medium and the opaque surface, and transmitted through the semitransparent surface, and, in the end, attenuated to zero.
During this process, the total radiative intensity reaching the lower surface will be [13] FT, 4 (L;)/(1 — FJ, ) for Process 1

VA AN

Process 1 Process 2

Fig. 2. Diagram of the radiative propagating in a single STM for specular boundaries.
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Fig. 3. Diagram of equivalent radiative propagating in a two-layer STM for specular boundaries.

and FT,,;(2L,) /(1 — FJ,;) for Process 2, where the subscript ‘4’ denotes the radiation transfer process occurring in the sth
layer. Fig. 3 provides the equivalent radiative propagating in a two-layer STM with specular surfaces, and the beeline and
flexline with arrowhead within each layer denote Process 1 and Process 2 of Fig. 2, respectively. As shown in Fig. 3, the unit
radiative intensity emitted by surroundings S_,, and transmitted into the composite attenuates to zero due to the processes
occurring in the first layer. Part of the radiative intensity, denoted by 77;, is transmitted into the second layer through
interface Sp, and the rest is absorbed by the first layer medium and transmitted into the surroundings. 77, can be divided
into three parts: the first part, denoted by 77,, comes back to the first layer through interface Sp; the second part, denoted by
(S_xe$2) ,is‘, is absorbed by opaque surface S, and is called first-order absorption,
2 Ya1peaeE Tk (L) FToi(Lo)

Ist
(S-ccS2)i =3y (1= Fh)(1 = FEhy) .

the last part is absorbed by the control volumes of the second layer. For T1,, the part denoted by 775 is transmitted into
the second layer. Just as for 77;, 71 can also be divided into three parts. Thus, the part denoted by (S,sz)i"d is ab-
sorbed by opaque surface S, and is called second-order absorption, or

2 Vgl“/1P52gFT|.k(L1)FT2~k(L2)

(S*'X’Sz)znd = nz,k (1 _ FJlk)(l _FJZ.I() (FJ/C )l' (7b)

By analogy, third-order absorption is

V&2 FT1 1 (L1)FT5 4 (L
(S S — ngkygl/lp 26 FT1 (L) FT i (La)
! (1 *FJ]}/()(I *FJz‘k)

(FJ, )%, (7c)

and the (n + 1)th-order absorption is:

5 VaipeaeE T k(L) FTo(Lo)

(n+1)th n
(S*’X’Sz)k =My (1 — FJl,k)(l — FJZ/() (FJk) . (7d)

According to the above analysis, in the entire transfer process, in which the radiative intensity emitted by S_., comes
into the composite medium, and then is attenuated to zero, the total radiative intensity absorbed by opaque boundary
surface S, is the sum of the geometric progression represented by Eq. (7d). Then RTC (S_.5,); can be calculated by
integrating the total radiative intensity over a hemisphere as

1
(a8 =2 [ (S8l (SaS o (S-S -+ |1
Hag

U v ner FT (L)) FTs 1 (L
:2n§,k/ Vo1 Vip€2gF T i (L1) T4 (La) 1 dgs (7e)
Hog

(1 = FJ ) (1 — Fhy) (1 — FJy)

For specular reflection, the RTCs of the composite with one semitransparent outer boundary and one opaque outer
boundary have the following reciprocal relationships:

szylg(SfocSZ)slsg = ngtkylPVgl(SZSS*OC)ISH (S*OC Vl/)lz(ylg = n%.kygl (VIJS*O‘J)/S(7 s
n%.k”/lp(Sz Vlj)k = n%‘k“/zp(Vl,-Sz)k, (S—ao VZ,)kVZPng = n%_,k”/lp"y’gl (I/sz—x)k,
(SZVZJ); = (V2,S2)Zz ni 720 (VA V), = n%,kylP(Vz/ Vi)
(hh,) = (B )} (1), = (1 1),
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So, one of each pair of the RTCs except for (S_..5,); is given by Eqs. (9)—(15):

FT14(x11,) + pipFTi(Ly + xp1,,,)
1—FJi,

1
(S_wWh,); = 2yami, / FAy 4

Hig

+ylPV2Pp2gFTl,k(L1)FTZ.k(ZLZ)[FTl‘k(xP,li,,l)+p1gFTl‘k(Ll+x1‘1j)} 1 dy
(1 — E1 > (1 — FhLy) (1 — FJ) R

1
s VapF Do (La) [FT1 4 (xp,., ) + prFTis(Ly +x1,)]
), = 2en7, | FA . £ =y d
(SZVIJ),( £2gn1‘k-/0 1,k (1 _FJI,k)(] _FJzﬁk)(l — FJk) My Ay,

y1pFTh (L) [FTz,k(XP,z,) + 02 FTo k(Lo +x2,2,+1)]
(1 — EJ ) (1 — Fhy)(1 = Ey)

1
(S_oc¥3,); = 2vamy, / FAy s o dp,

Hag

1
s FToy(x2,41) 4 popFTos(Ly + Xp2,)
(SZVZ'/)]C - 282/ FAM{ | - )(1 2II;Jz ) : :
0 - ke

N V20 1pP1gF Tk (L) FT (2L ) [FTai(xp2,) + pagFToi(La + %22,41)] s da
2 29
(1 — Fhy ) (1 — 1) (1 — F)

! 2}’12 FAlkFAZky
V) = L akinn snine o1 FTy 4 (xy, FTy L
( 1; 2,)k Aﬂ (= Fh0)( = Fhy) (1 —Fy) [ 1k (X1,,.0) + 1 FT i (x1,0 + 1)}
X [FTop(xp2;) + poFTou(La + X22;,,) | 1y dpty,
1 FAZ
NV, =Rix+2 | kL o FT (v +x0a,) + FTig(xy,0 + Ly +xp1 )
(15 L)k Lk . T—FJ, Prgl L1 k(X1 L1 PigPrpt L1 (X1, 1 Pl

+ P1gP1pFTi k(12 + Lt +X11,) + p1pF T (X1, + %P1 )

[,DlgFTLk(xl,ﬂ,l +L) “'FTLk(xl,‘H‘P)} [FTLk(xP,l,H) + p1FT (L +x1‘1,)} u dp
(1 = FJy i) (1 = Flog ) (1 = FJ) / [71pP2g 02 F T2k (2Ls) ] L

+

1 FAZ
(1, 15)) = Rog +2 / 1= ;;” {szm.k(xznP +xp2;) + PagP2pF i (X2, 2 + Lo + Xp2,)
0 - S

+.DZgFTZJC (x2f+1,2 + X224 ) + ngPZPFTZ,k (xZ,u,P + L+ X224 )

| [FTZ,k(xZI.P) + o F ok (X220 + L2)] [FTZA,k(xP,Z,) + P2 F ok (L, + X201, )] 10, di
I (1 = FJyu)(1 = Fh) (1 = FI) / [926710016FT14(2L1)] P

The RTCs of surroundings S_., and opaque surfaces S, have no reciprocal relationship, and are given as

1
(Sfocsfw)lsg = pgl + 2n%,nglV1g/

Hig

P1pFT (2Ly)  V1pPagVarfTi x(2L1 ) FT2 4 (2Ly)
L=Fhye (1= Fh) (0 —Fh)(1—F7) [

($:5); =2 ! ppF ik (2Ly)  PigVipYapFTou(2L:)FTh 4 (2L)
202); = 2628 1= F + 3 ) Ay,
0 2.k (1 —FJz‘k) (1 —FJ|_k)(1 —FJk)

where
1
Ry = 4rppAx = 2[1 = 2E5(kp,AX)] (i =),  Rpx = 2/ FA, FTy i (x5, 1 dpy (0 7 J)-
0
A limiting condition, n; < ny, is implied in the above equations, so that the critical angles are:

Mg = 1*(1/’11)2’ g = 1*(1/”2)27 and p, = 1*(’ll/”‘z)z-

431

(12)

(14)

(15)
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Considering the total reflection, the following limiting conditions must be met: if i, <y, then p,p =1, y,, = 0; if
Hat S My S g OF 0y <y, then ppp =1

3.1.2. RTC for diffuse reflection

When RTC is deduced by the ray tracing method for specular reflection, the radiative intensity is determined at first,
then RTC can be calculated by integrating the total radiative intensity. For diffuse reflection, the direct radiative
transfer coefficient (DRTC) is needed to calculate RTC, but the tracing process of radiative energy is the same as that
for specular reflection, so it is omitted here. The RTC equations and the reciprocity relationships for diffuse reflection
are provided in Appendix A.

3.1.3. RTC for combined specular and diffuse reflection
RTC equations for combined specular and diffuse reflection are obtained, here, by a linear sum of the RTC
equations for specular reflection and that for diffuse reflection. As shown in Eqs. (18a)—(18d)

(SiS, )5+d et X (SiS)} + (1= Prr) X (SiSo)f (ShySe = Sy ), (18a)

(i)} = Pt % (Si7); + (1= Pat) X (Si¥); (S = S-c, 52), (18b)

(%S, )”d rer X (ViSo)i + (1= Prr) x (ViSo)f (e = S-, S2), (18¢)

(R1); " = B x (W), + (1= Par) % (V1) (184)
where P, is the quotient of specular reflection coefficients.

Per = (P + Pig + )/ (o + Pl o+ P + Pl + ). (19)

RTC for a two-layer, absorbing, emitting, and isotropically scattering STM with both semitransparent boundaries and
both opaque boundaries were provided in [15,16], respectively.

3.2. RTC considering isotropic scattering

When the effect of scattering is considered, the fractions of radiative energy represented by RTCs (S,S.), (SiV),
(V;V;) will be redistributed. For convenience’s sake, subscript ‘4’ and superscripts ‘s’, ‘d” and ‘s +d’ are omitted in the
following equations. Omission is necessary because, when isotropic scattering is considered, the derivational process
and the final form of the RTC equation are the same regardless of whether the medium is spectral or gray, and whether
there is specular, diffuse or combined specular and diffuse reflection.

Taking [V;¥;] as an example, the derivation of RTC equation, considering isotropic scattering, is given here. A
midterm function H,[Y] is defined:

HVIH[Y] = wlz{MlZH(Vles)w/}{MlZ“(Vleh)wh X X |: Mlzﬂ (V Vln+l) Lnt1 Y:| }} (20)

=2 =2 =2
After first-order scattering, for the fraction of energy transfer denoted by RTC(V,-V_,—), only #; is absorbed, i.e.,
Is
Vi) = v, (21a)

After second-order scattering,

M+1 M+1
V2 = ) 2 i) o (WY, = [V + Z (S_oc Vi) Ha [V V)] (21b)

a
=1

After third-order scattering,

M+1
S (AR A A AL (21c)
=1

[viv)

a

Similarly, after the (n + 1)th-order scattering, each RTC is given by

M+1
[VV] (n+1)th [V,VJ nth + Z VV, VH,. 1 [(Vlm V')nj]u (22)

=2
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M+1
[ = [ 4+ > SV Hue [V Vi ), (23)
=2
Mi+1
[ViSJEIM)m _ [ViSL,}Z““ i Z(VfV/z)Hm [(7,.,82)] (24)
=2
Mi+1
(5,8, = [5,8.]7 + Z(Sh Vi) H,1 [(V,.,S0)]- (25)
=2

3.3. Determination of reflectivity

Reflectivity p of a semitransparent surface can be obtained from Fresnel’s equations [17]. When radiation passes into
a material of a larger refractive index, reflectivity p,_,, is

- /7[/2 { {n,, cos (@) — ngcos (0) } 2 . {nx cos (¢) — ny, cos (0)

2
in(0 0) do 26
n;, cos (@) + nycos (0) 1 cos (@) + ny cos (9)} } sin(6) cos(6) do, (26a)
where 0 is the incidence angle, ¢ is the refractive angle, and ¢ = arcsin[n, sin(0)/n;]. When radiation goes from a larger
to a smaller n value, reflectivity p,_ is given by [18] as

Py = 1= (n/m)’ + pyy, (n/mi), (26b)

where ‘1 — (n, /n,,)z’ is caused by total reflection. For a specular surface, the total reflection is considered in the RTCs.
Therefore, pj_ . becomes

Phs = Pl (n/my)’. (26¢)

For a diffuse surface, it is assumed that each bit of roughness acts as a smooth facet [17] and total reflection is con-
sidered in the reflectivity so that the reflectivity can be directly obtained from Egs. (26a) and (26b).

4. Verification of the computational method

By far, the research for coupled radiation—conduction in a two-layer STM with one semitransparent outer
boundary and one opaque outer boundary were not found in the open literature. To partially validate the present
solution, the results of the coupled radiation—conduction in [§] for a two-layer STM with both opaque outer
boundaries and [9,10] for a two-layer STM with both semitransparent outer boundaries are used for comparing with
the present results.

The steady-state dimensionless temperatures and heat fluxes here for a two-layer STM with both opaque outer
boundaries are compared with those in [8]. The input parameters are: both of the boundary surfaces are black,
&1 = &g = 1; the boundary conditions are the first kind, TS, =0.5, 7"32 = 1.0; the radiation—conduction parameters of
both layers are the same, Ny = N, = N; and the reflection is ignored at the internal interface. The results are shown in
Table 1. Whether conduction (N = 1.0) or radiation (N = 0.01) is dominant, the steady-state temperature and net heat
flux using the present method are in good agreement with the results of Ho and Ozisik [8]. The maximum relative error
of temperature is 0.027%, and that of net heat flux is 0.061%.

Under both semitransparent outer boundaries and diffuse reflection, Figs. 4(a) and (b) provide a comparison with
an exact numerical solution [9] and an approximate solution using Green’s function and the two-flux method [10]. Fig.
4(a) has the results for the same parameters as Fig. 4(b) except for the scattering albedo of the first layer. The pa-
rameters are: m =15 m =3, y=n=1 g5 =10% g, =025 N =N,=00625 H =H =1 T, =1,
Ty =0.25, 6 =0.5, and C,; = 1. As shown in Fig. 4, the results of this paper are almost the same as the exact
numerical solution in [9] so that it is difficult to distinguish both the curves without scattering and with scattering.
Whereas the approximate results in [10] deviate a little from the results in [9]. This demonstrates that the equations
obtained here are correct and the accuracy of the method developed is high because the space solid angle is not
dispersed but is directly integrated.
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Table 1
Comparison of the results in this paper with those in [8] (N = N, = N)
N 7 75 W) w X q,
T [8] T (This paper) [8] This paper
0.25 0.5 0.75 0.25 0.5 0.75
1.0 0 0 0.6402 0.7693  0.8849  0.64030 0.76938 0.88503 2.3788  2.37876
2.4 0.6 0 0.95 0.6393 0.7672 0.8836  0.63939 0.76741 0.88372 2.3640 2.36416
0.95 0 0.6321  0.7613  0.8828  0.63215 0.76146 0.88282 2.3284  2.32824
0 0 0.8023  0.9097 0.9409 0.80241 0.90983 0.94084 0.3252  0.32500
2.4 0.6 0 0.95 0.8006  0.9065 0.9469  0.80069 0.90669 0.94705 0.3220 0.32204
0.95 0 0.7693  0.9029  0.9427  0.76938 0.90301 0.94265 0.3148  0.31488
0.01 0 0 0.7556  0.8440 0.9103  0.75557 0.84395 0.91026 0.3184 0.31832
1.5 1.5 0 0.95 0.7535 0.8410 09114 0.75346 0.84103 0.91144 0.3144 0.31424
0.95 0 0.7140  0.8430  0.9130  0.71407 0.84304 0.91293 0.3100  0.30992
0 0 0.6957 0.7650 0.8790 0.69546 0.76493 0.87868 0.3144 0.31432
0.6 2.4 0 0.95 0.6937 0.7679  0.8763  0.69364 0.76786 0.87625 0.3096  0.30956
0.95 0 0.6489 0.7664 0.8815 0.64875 0.76637 0.88132 0.3088  0.30872
1.00 " v v .00
! ——— T T0.05 . 1.00

0.95 0.95

0.90 0.90

0.85 0.85

0.80F 0.80

,=0.999

Dimensionless temperature 7= T/ T,
Dimensionless temperature T'=T7/7,

0752 =@2=0 0.75F ¥2=0

Ly =1y =1 n=1=1
0.70 - This 0.70 " This paper
065F Ref. [9] Dimensionless 0.65F —==Ref. [9] Dimensionless

L Ref [10] |time 7 ] | Ref [10) | time 7
0.60 " 1 A 1 1 A 1 A 0 60 " A e 1 1 " 1 "

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0
(a) Dimensionless coordinate X= x/L, (b) Dimensionless coordinate X= x/L,

Fig. 4. Comparison of present results with those of [9,10]: (a) without scattering in both of the layers; (b) isotropic scattering in the first
layer.

5. Results and analysis

Effects of scattering albedo of the composite, reflective characteristics of the surfaces, emissivities of surface S, and
conduction-radiation parameter on temperature and flux are considered. The spectral band models shown in Table 2
are used to simulate the spectral properties of the composite.

Table 2
Spectral band model for the composite
k Spectrum A Spectrum B
Kk Wy A Ki wy
1 0-2 2.0 0.95 0-2 5.0 0.0
2 2-5 0.2 0.95 2-5 0.5 0.0
3 S5—00 Opaque 5-00 Opaque
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5.1. Effects of reflective characteristics and single-scattering albedo

P =1 for the specular surface, P = 0 for the diffuse surface, and P = 0.3 and P, = 0.7 for the combined
specular and diffuse reflective surface are adopted. The reflectivities of a semitransparent surface are calculated by using
Fresnel’s equations, and the emissivities of opaque surface S, are &, = & = 0.4. The composite is assumed to be gray,
and the optical thickness is kept constant, t; = 0.1 and 7, = 5. The following three conditions of the scattering albedo
are considered: w; = w, = 0 (see Fig. 5(a)), w; = 0.99 and w, = 0 (see Fig. 5(b)), w; = 0 and w, = 0.99 (see Fig. 5(c)),
and w; = 0.99 and w, = 0.99 (see Fig. 5(d)). The boundaries are subjected to radiative and convective heat transfer, and
gy =15 g5, = 0.54, Tgl = ng = 1.0, H; = H, = 5. The other parameter are: n; = 1.5, n, = 3.0, N; = N, = 0.025,
0=05,Cy=1.

As shown in Fig. 5,

1. Since radiative energy of the surroundings can be directly transferred into the interior of STM, and radiant propa-
gation is more rapid than conduction, and the optical thickness of the first layer is smaller compared to that of the

1.4 T T T T 1.4 —T T T T

= Specular ] | — Specular

——— Diffuse ——— Diffus

r

Dimensionless temperature 7

Dimensionless temperature 7=T/T

1.0 2 1.0 :
00 02 04 06 08 1.0 00 02 04 06 08 1.0
(a) Dimensionless coordinate X'= x/L, (b) Dimensionless coordinate X= x/L,
14— _— ld———T1 1 1
— Specular | Specular
——=—Diffuse i ——=— Diffuse
Sy = I
B ~
I 'L
U thm
B g
g g
g 2
LH 2
g g
.E a
a a
1.0 - . 1.0 L i i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(¢) Dimensionless temperature X'= x/L, (d) Dimensionless coordinate X'= x/L,

Fig. 5. Effects of scattering and reflective characteristic on temperature distribution: (a) w; = w; = 0; (b) w; = 0.99, w, = 0; (¢)
w; =0, w =0.99; (d) w; =0.99, w, = 0.99.
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second layer; the peak value of transient temperature appears within the second layer and near the internal interface,
and even two peak values of temperature appear within the composite for the small dimensionless time 7 = 0.1.

2. For the steady state, the peak value of temperature in the second layer disappears due to the effect of conduction, but
that in the first layer still exists (see Fig. 5(a)), which is the same as that for a two-layer STM with both semitrans-
parent boundaries [15].

3. Since the optical thickness is kept constant, when w; = 0.99, the absorbing optical thickness of the first layer
becomes 0.001, so that the peak value of temperature appears within the second layer for both transient state
and steady state (see Fig. 5(b)).

4. When w; = 0 and w, = 0.99, compared with Fig. 5(a), the peak value and the gradient of temperature for transient
state minish.

5. From Figs. 5(a)-(d), we can see that the reflective characteristics affect only the value of temperature, but not the
trend of temperature distribution. Furthermore, for the combined specular and diffuse reflection, the temperature
distribution falls between those for specular and diffuse reflection. In addition, for all reflective characteristics,
the temperature distribution trends are the same when the other parameters are same.

5.2. Effect of conduction—radiation parameter

To show the effect of conduction-radiation parameter N, on the steady-state temperature distribution and heat flux
density for gray composite with the specular reflection, five groups of N are adopted, i.e.,

(a) Ny = N, = 0.025 (solid line);

(b) Ny = 0.25, N, = 0.025 (dash line);

(c) Ny = 2.5, N, = 0.025 (double dot—dash line);
(d) Ny = 0.025, N, = 0.25 (dot—dash line);

(e) Ny = 0.025, N, = 2.5 (dot line).

No scattering, w; = w; =0, 7y = 0.5, 7, = 0.1; first kind boundary conditions at both boundaries, F]\;S] =1, TSZ =0.5.
The other parameters are the same as those of Figs. 5(a)-(d).

Fig. 6 and Table 3 provide the temperature distributions and heat flux densities, respectively. Compared with
condition (a), when the conduction-radiation parameter of the first layer N; increases and that of the second layer N,
remains unchanged. Due to higher conduction in the first layer, the temperature gradient in the first layer falls and that
in the second layer rises, and the radiative heat flux density decreases and the conductive heat flux density increases.
When N; remains the same, but N, increases, the change of the temperature gradient in the composite is contrary to that
for conditions (b) and (c).

1.0

(7= T T T
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Fig. 6. Effects of conduction-radiation parameter on temperature distribution.
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Table 3
Dimensionless heat fluxes under the condition of Fig. 6

Case (a) Case (b) Case (c) Case (d) Case (e)
q" 0.4125 0.3120 0.1972 0.4567 0.4848
7% 0.2053 0.5132 0.8732 0.2314 0.2486
q' 0.6178 0.8252 1.0705 0.6880 0.7334

/T

Dimensionless temperature 7 -

Spectrum A-B|

l— — = Spectrum B-A]

i | i |

1.0 :
00 02 04 06 08 1.0

Dimensionless coordinate X'= x/L;

Fig. 7. Effects of inner surface emissivity &, on temperature distribution.
5.3. Effect of emissivity of opaque surface

Fig. 7 shows the effect of the emissivity of opaque boundary surface S, on the temperature distribution and the heat
flux density for the two-layer STM with the diffuse reflective surfaces. The spectral band models shown in Table 2 are
adopted to simulate the spectral properties of the composite, L; = L, = 1, Cy; = 1. The mixed boundary conditions are
used, i.e., a third kind boundary condition for surface S, H, = 2, Tgl =1, ’qu% = 1.5*% and a first kind for surface S,
TSZ = 1. &, is equal to 0.05, 0.2, and 0.9, respectively. And each &, corresponds two kinds of conditions, i.e.,

(a) spectral band model A and model B are applied to the first and second layer, respectively (Spectrum A-B);
(b) spectral band model A and model B are applied to the second and the first layer, respectively (Spectrum B-A).

As shown in Fig. 7, with the increase of ¢, the reflectivity p,, =1 — &, decreases so that the temperature in the
composite falls. For conditions (a) and (b), the peak values of temperature appear in the first layer. But, compared with
the spectral band model B, the optical thickness of model A is smaller and has strong isotropic scattering. So, the peak
value of temperature for condition (a) appears somewhere closer to boundary surface S| than that for condition (b).

6. Conclusions

On the basis of our previous work, the ray tracing method in combination with Hottel’s zonal method is extended
to the study of the transient coupled radiation and conduction in a two-layer isotropically scattering STM with one
semitransparent outer boundary and one opaque outer boundary. It needs only to disperse the space position, but
rather than disperse the solid angle. The composite radiative properties are modeled by two spectral band models,
and the reflectivities of a semitransparent surface are obtained by Fresnel’s equation. The comparison with the results
of [8-10] shows that the present results are accurate. On this basis, the effects of single-scattering albedo, reflective
characteristics, conduction-radiation parameter, and emissivity on the temperature distribution and heat flux are
investigated.
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By analyzing of the present results, the following conclusions are drawn:

1. For a two-layer STM with different radiative properties, one semitransparent outer boundary and one opaque outer
boundary, the peak value of temperature may appear in the composite, and may be two peak values of temperature
for a small dimensionless time.

2. An inhomogeneous STM can be an equivalent to a composite composed of the impinging multi-layer STM. When
the composite is subjected to high-temperature surroundings at one semitransparent boundary and low-temperature
surroundings at another boundary, we can predict that the peak value or maximum of the transient and steady-state
temperature may nevertheless appear inside the media.
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Appendix A. Expressions and reciprocity relationships of RTC equations for diffuse reflection

A.1. RTC for an absorbing, emitting composite medium

For diffuse reflection, two rays with different launching angles can be mixed. So, in this paper, the RTC for diffuse
reflection are obtained by tracing the radiative energy using DRTC. The DRTCs are given as:

(S/,Sp)k = 2E3(K/, /(L;,)7 (Al)
(s101,); = 2E3(K14Xs,,1;) — 2E3(K14Xs,1,., )5 (A.2)
(sp02,); = 2E3(K24Xsp 2;) — 2E3(KaXsp2,,,)5 (A.3)
(S202,); = 2E3(K24Xs,0,,,) — 2E3(K24Xs, 2,), (A4)
(spv1,)e = 2E3(K14%5p,1,,,) — 2E3(K14%Xsp1,) (A.5)
(vs,0,) = 2E3(Kpaxp,,, ;) — 4E3(kppxn,8,) + 2E3(Koaxnn,,) (0 7)), (A.6)
(Ub,vb/)k = 4Kb‘kAX — 2[1 — 2E3(Kb‘kAX)] (l = ]) (A7)
For convenience’s sake, two functions are defined here [16]
FMth = pprbg(shSP)iv (AS)
FMy = 1p72pP 16 P2 (5158)3 (5259 )¢ /[(1 — FMi ) (1 — FMy)]. (A9)
RTC equations are obtained by tracing the radiative energy using DRTC.
Ve1V1p82 (S15P), (5P52),
S8 = g A.10
(S-S = Ty ) (1 = B ) (1 — BV (A-10)
d "/gl%gPlP(SlSP)i “/g1VlngPPZg”/zP(SlsP)z(SZSP)Z
(SfooS—OO)k = pgl + 1 M 2 ’ (All)
- 1.k (I—FMlk) (I—FMzk)(l—Wk)
(stz)z _ Szgszgpzp(szsp)z 82g82g“/2p2plg“/1p(525P)lzf(slsP)i ’ (A.12)
1 — FM> (1 — FM,.) (1 — EM ) (1 — EMy)
(St = (s101); + (s150)pip(sprr),  (s150),(sp82); [(spv1,); + (5ps1)prg(s101),] (A13)

(1- FMW)/V&’I (1- Wl,k)z(l — FM)(1 — FMk)/VglPZgylPVZP ’

 Ta7ip(5159) [(5p02) )¢ A (5982) P2 (5202)), ]
(SfooVZJ»)z - (1 —FMU{)(l _FMz,k)(l —FMk) ) (A14)
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825720 (5258) [(sp01,) + (585115 (5101, ]

(S2H))i = (1= AMy)(1— FMy) (1 — M) A
a  (5205) + paplsase)i(spvn), | (sasp)i(s15p)i [(5p02))y + (5p2)pag (5202,),]
(S272)i = (1 — FMy) /62 (1= My ) (1 — FMy ) (1 — FM) [eagyappigdie A1
a“_ (50084 o (550, )5 + (565P)Pop (5008, )] (3P0, )P (58, )i + (505P )i (505, )i]
(Vs Vl’i)k = (vbivb.r)/c + (1 = FMyy) * (1 = FMy)
+ [(5505,) 08 (565P) Vsp + (8P, Vop | Peg Ve (SLSP)Z [(5p0s, )i + (5557 ) 4 Pig (S5Ub, )1 ] 7 (A.17)

(1 — My (1 — FMi)(1 — FMy)

[100)p1g(s150) 01 + (5p01,) 71 [(50,); + (5259) P2 (5202) ]
(VI,VZ/);:] - 1 (1 iFMu{)(l _FMN()(] —FMk) : ) (AIS)

A.2. Reciprocity relationships of RTC equations

For diffuse reflection, the total reflection is considered in the reflectivity and transmissivity, so the transmissivity and
reflectivity of the different sides of an interface are different. The reciprocity relationships of RTC equations are given by

(S ocSZ)szP/lg (528 )lePVg17 (- Vll):”hg = (Vl,S—oc)ngn
(S V;»mvlg (BS)ipYe: (S, ),‘ivlp = (3,82) 720+
($> Vz,) (VZ/SZ),(, (Vlz -,)kV2P = (VZ, Vl‘)g"/w:
(M) = (M) (B TA); = (4

(A.19)
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